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• Problem: Multi-agent path planning for large-scale autonomous mobility 
where hundreds to thousands of robots are simultaneously completing tasks. 

• Challenges: 
• Problem scales exponentially in the number of agents and MAPF is NP-Hard.
• inherent sources of uncertainty such as item arrival estimations and 

kinodynamics modeling for robots.

• Application: motivated by modeling interactions of large amounts of robots 
planning paths in warehouses settings such as sorting centers at Amazon.

Motivation

• The current state-of-the-art for multi-agent path finding (MAPF) algorithms is 
called conflict-based search (CBS) which is guaranteed to find an optimal 
solution when one exists [2]. 

• For agents that each pass through a given sequence of subregions, we develop 
an algorithm to solve CBS within each subregion as agents pass in and out. 

• This method turns rough trajectory estimates into viable, realistic paths that 
are locally optimal in space and time. 

Sub-Region Decomposition

Our Approach

• Discussion: Our approach combines theoretical techniques from algebraic graph 
theory and convex optimization formulations of routing games with popular multi-
agent path finding (MAPF) algorithms for large-scale planning problems. 

• In future work we plan to combine our path planning approach with linear task 
assignment algorithms such as the Hungarian (Kuhn-Munkres) algorithm [1]. 

Discussion and Future WorkComputing Trajectory Rollouts using Subregion CBS

• The grid world is divided into spatial subregions by performing a Dantzig-
Wolfe decomposition on the incidence matrix graph of the whole grid world. 

Routing Game Formulation

• The routing game is formulated as a convex optimization problem where we assume the 
edge latency functions are increasing. In the presence of congestion, we formulate the 
problem by introducing a routing game potential function 

Giving the optimization formulation 

Learning Congestion

• We use a deep learning approach to predict congestion present in agent interactions from 
the CBS path planning in each sub-region to predict travel-times on edges in the graph. 

• We develop a Graph Convolutional Network (GCN) for extracting spatial features on the 
graph to learn travel-times on each edge experienced by agents in the CBS trajectories. 
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Initialization:
1. Represent the grid world abstraction as a graph.
2. Spatially decompose the graph into sub-regions using a Dantzig-Wolfe decomposition.
3. Train a GCN based on data from CBS rollouts using certain agent configurations. 
Iteration:
1. Sample paths for agents from the current equilibrium estimate.
2. Rollout paths using CBS 
3. Estimate edge latencies using the pre-trained GCN from the CBS rollouts 
4. Compute the new shortest paths given current edge latencies 
5. Update the equilibrium estimate using Franke-Wolfe style update. 
6. Repeat steps 1-5. 
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We define a graph G(V, E) with nodes V and edges E . Each edge e ∈ E is
associated with a flow variable xe ∈ R+ that denotes how much population
mass is on that edge and a latency function ℓ̄e(x̄e) that gives the travel time for
taking a particular edge.

We compute an approximate latency function from the graph convolutional

network as L̄ : x ∈ R
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