

Decomposition and Learning Congestion for Multi-Agent Path Finding

Jake Gonzales, Joey Sullivan, Samuel A. Burden, Lillian J. Ratliff, Daniel Calderone Department of Electrical and Computer Engineering, University of Washington

Motivation

- **Problem:** Multi-agent path planning for large-scale autonomous mobility where hundreds to thousands of robots are simultaneously completing tasks.
- **Challenges:**
- Problem scales exponentially in the number of agents and MAPF is NP-Hard.
- inherent sources of uncertainty such as item arrival estimations and kinodynamics modeling for robots.
- **Application:** motivated by modeling interactions of large amounts of robots planning paths in warehouses settings such as sorting centers at Amazon.

Sub-Region Decomposition

• The grid world is divided into spatial subregions by performing a Dantzig-Wolfe decomposition on the incidence matrix graph of the whole grid world.

We define a graph $G(\mathcal{V}, \mathcal{E})$ with nodes \mathcal{V} and edges \mathcal{E} . Each edge $e \in \mathcal{E}$ is associated with a flow variable $x_e \in \mathbb{R}_+$ that denotes how much population mass is on that edge and a latency function $\overline{\ell}_e(\overline{x}_e)$ that gives the travel time for taking a particular edge.

$\left[E_{\rm o}\right]_{je} = \begin{cases} 1\\ 0 \end{cases}$	if edge e starts at node j otherwise	E =	$\begin{bmatrix} D_1 \\ F_1 \\ 0 \end{bmatrix}$	D_{2} 0 F_{2}
$\left[E_{\mathbf{i}}\right]_{je} = \begin{cases} 1\\ 0 \end{cases}$	if edge e ends at state j otherwise		: 0	: 0

Full Grid World

Divide world subre	e grid l into gions
ren nodes interi	nove from or of cions
ad	d fully
conn edges subre	ected within gions

Simplified Routing Graph

• • •

• • •

• • •

• • •

Computing Trajectory Rollouts using Subregion CBS

- The current state-of-the-art for multi-agent path finding (MAPF) algorithms is called conflict-based search (CBS) which is guaranteed to find an optimal solution when one exists [2].
- For agents that each pass through a given sequence of subregions, we develop an algorithm to solve CBS within each subregion as agents pass in and out.
- This method turns rough trajectory estimates into viable, realistic paths that are locally optimal in space and time.

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Learning Congestion

- We use a deep learning approach to predict congestion present in agent interactions from the CBS path planning in each sub-region to predict travel-times on edges in the graph.
- We develop a Graph Convolutional Network (GCN) for extracting spatial features on the graph to learn travel-times on each edge experienced by agents in the CBS trajectories.

Routing Game Formulation

• The routing game is formulated as a convex optimization problem where we assume the edge latency functions are increasing. In the presence of congestion, we formulate the problem by introducing a routing game potential function

$$\bar{F}(\bar{x}) = \sum_{e \in \bar{\mathcal{E}}} \int_0^{\sum \bar{x}_e} \bar{\ell}_e(s) \ ds = \sum_{e \in \bar{\mathcal{E}}} \int_0^{\sum (o,d)} \bar{x}_{ode} \ \bar{\ell}_e(s) \ ds$$

Giving the optimization formulation

Routing Game Equilibrium (Probabilistic)

Incidence Matrix

SPONSOR: UW + Amazon Science Hub

Sampled Routes (Deterministic)

Initialization:

- 1. Represent the grid world abstraction as a graph.

Iteration:

- 1. Sample paths for agents from the current equilibrium estimate.
- 2. Rollout paths using CBS
- 4. Compute the new shortest paths given current edge latencies
- 5. Update the equilibrium estimate using Franke-Wolfe style update.
- 6. Repeat steps 1-5.

We compute an approximate latency function from the graph convolutional network as $\bar{L}: x \in \mathbb{R}^{|\mathcal{E}|} \mapsto \mathbb{R}^{|\bar{\mathcal{E}}|}$ and x defined by the rollouts from the robot trajectories we implement the FW style update as

$\min_{\xi,\xi_{od}}$	Ī
s.t.	E
	ξ

Alg	gorithm 1 Franke-Wolfe with
1:	Input $x^{(0)} \in \mathcal{X}$
2:	$\mathbf{Output} x^{(k)} \in \mathcal{X}$
3:	Given Edge travel-times $\bar{\ell}_e(e)$
4:	for $k = 1, \cdots, T$ do
5:	Compute shortest paths I

7: end for

Discussion and Future Work

[1] Daniel Calderone, Kelly Ho, Lillian Ratliff, Bipartite Matching and Routing with Congestion Costs: A convex approach to robot task assignment and the multi-agent pathfinding problem. LCSS/CDC, 2024, submitted. [2] Sharon, et al, Conflict-based Search for optimal multi-agent pathfinding, Artificial Intelligence, vol. 219, 2015.

Our Approach

2. Spatially decompose the graph into sub-regions using a Dantzig-Wolfe decomposition. 3. Train a GCN based on data from CBS rollouts using certain agent configurations.

3. Estimate edge latencies using the pre-trained GCN from the CBS rollouts

 $(x^{(k)})$ $E_{od}\xi_{od}^{(k)} = S_{od}, \ \xi_{od}^{(k)} \ge 0 \ \forall o, d$ $\xi^{(k)} = \sum \xi^{(k)}_{od}$

h Shortest Paths

 (\bar{x}_e)

 $P_{o,d}$ and the associated costs using Dijkstra's algorithm Update $x_{od}^{(k+1)} \leftarrow (1-\gamma)x_{od}^{(k)} + \gamma\xi_{od}^{(k)}$ for $\gamma = \frac{2}{k+2}$

Discussion: Our approach combines theoretical techniques from algebraic graph theory and convex optimization formulations of routing games with popular multiagent path finding (MAPF) algorithms for large-scale planning problems.

In future work we plan to combine our path planning approach with linear task assignment algorithms such as the Hungarian (Kuhn-Munkres) algorithm [1].