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Problem: Multi-agent path planning for large-scale autonomous mobility
where hundreds to thousands of robots are simultaneously completing tasks.

Challenges:

Problem scales exponentially in the number of agents and MAPF is NP-Hard.
inherent sources of uncertainty such as item arrival estimations and
kinodynamics modeling for robots.

Application: motivated by modeling interactions of large amounts of robots
planning paths in warehouses settings such as sorting centers at Amazon.

The grid world is divided into spatial subregions by performing a Dantzig-
Wolfe decomposition on the incidence matrix graph of the whole grid world.

We define a graph G(V, &) with nodes V and edges £. Each edge e € & is
associated with a flow variable . € R, that denotes how much population
mass is on that edge and a latency function £.(Z.) that gives the travel time for
taking a particular edge.
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The current state-of-the-art for multi-agent path finding (MAPF) algorithms is
called conflict-based search (CBS) which is guaranteed to find an optimal
solution when one exists [2].

For agents that each pass through a given sequence of subregions, we develop
an algorithm to solve CBS within each subregion as agents pass in and out.

This method turns rough trajectory estimates into viable, realistic paths that
are locally optimal in space and time.

Initialization:

1. Represent the grid world abstraction as a graph.

2. Spatially decompose the graph into sub-regions using a Dantzig-Wolfe decomposition.
3. Train a GCN based on data from CBS rollouts using certain agent configurations.

« We use a deep learning approach to predict congestion present in agent interactions from
the CBS path planning in each sub-region to predict travel-times on edges in the graph.

« We develop a Graph Convolutional Network (GCN) for extracting spatial features on the
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« The routing game is formulated as a convex optimization problem where we assume the

edge latency functions are increasing. In the presence of congestion, we formulate the We compute an approximate latency function from the graph convolutional
problem by introducing a routing game potential function network as L : « € RI¢l — RI¢l and x defined by the rollouts from the robot
~ trajectories we implement the FW style update as
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