
Decomposition and Learning Congestion for Multi-
Agent Path Finding
Jake Gonzales, Joey Sullivan, Samuel A. Burden, Lillian J. Ratliff, Daniel Calderone

SPONSOR: UW + Amazon Science Hub

• Problem: Multi-agent path planning for large-scale autonomous mobility
where hundreds to thousands of robots are simultaneously completing tasks.

• Challenges:
• Problem scales exponentially in the number of agents and MAPF is NP-Hard.
• inherent sources of uncertainty such as item arrival estimations and

kinodynamics modeling for robots.

• Application: motivated by modeling interactions of large amounts of robots
planning paths in warehouses settings such as sorting centers at Amazon.

Motivation

• The current state-of-the-art for multi-agent path finding (MAPF) algorithms is
called conflict-based search (CBS) which is guaranteed to find an optimal
solution when one exists [2].

• For agents that each pass through a given sequence of subregions, we develop
an algorithm to solve CBS within each subregion as agents pass in and out.

• This method turns rough trajectory estimates into viable, realistic paths that
are locally optimal in space and time.

Sub-Region Decomposition

Our Approach

• Discussion: Our approach combines theoretical techniques from algebraic graph
theory and convex optimization formulations of routing games with popular multi-
agent path finding (MAPF) algorithms for large-scale planning problems.

• In future work we plan to combine our path planning approach with linear task
assignment algorithms such as the Hungarian (Kuhn-Munkres) algorithm [1].

Discussion and Future WorkComputing Trajectory Rollouts using Subregion CBS

• The grid world is divided into spatial subregions by performing a Dantzig-
Wolfe decomposition on the incidence matrix graph of the whole grid world.

Routing Game Formulation

• The routing game is formulated as a convex optimization problem where we assume the
edge latency functions are increasing. In the presence of congestion, we formulate the
problem by introducing a routing game potential function

Giving the optimization formulation

Learning Congestion

• We use a deep learning approach to predict congestion present in agent interactions from
the CBS path planning in each sub-region to predict travel-times on edges in the graph.

• We develop a Graph Convolutional Network (GCN) for extracting spatial features on the
graph to learn travel-times on each edge experienced by agents in the CBS trajectories.

[1] Daniel Calderone, Kelly Ho, Lillian Ratliff, Bipartite Matching and Routing with Congestion Costs: A convex approach to
robot task assignment and the multi-agent pathfinding problem. LCSS/CDC, 2024, submitted.
[2] Sharon, et al, Conflict-based Search for optimal multi-agent pathfinding, Artificial Intelligence, vol. 219, 2015.

Department of Electrical and Computer Engineering, University of Washington

Initialization:
1. Represent the grid world abstraction as a graph.
2. Spatially decompose the graph into sub-regions using a Dantzig-Wolfe decomposition.
3. Train a GCN based on data from CBS rollouts using certain agent configurations.
Iteration:
1. Sample paths for agents from the current equilibrium estimate.
2. Rollout paths using CBS
3. Estimate edge latencies using the pre-trained GCN from the CBS rollouts
4. Compute the new shortest paths given current edge latencies
5. Update the equilibrium estimate using Franke-Wolfe style update.
6. Repeat steps 1-5.

[

Eo

]

je
=

{

1 if edge e starts at node j

0 otherwise

[

Ei

]

je
=

{

1 if edge e ends at state j

0 otherwise

E =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

D1 D2 . . . D|K|

F1 0 . . . 0

0 F2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . F|K|

⎤

⎥

⎥

⎥

⎥

⎥

⎦

F̄ (x̄) =
∑

e∈Ē

∫∑
x̄e

0
ℓ̄e(s) ds =

∑
e∈Ē

∫∑
(o,d) x̄ode

0
ℓ̄e(s) ds

min
x,xod

F̄ (x̄)

s.t. Ēx̄od = S̄od, x̄od ≥ 0 ∀o, d

x̄ =
∑

od

x̄od

We define a graph G(V, E) with nodes V and edges E . Each edge e ∈ E is
associated with a flow variable xe ∈ R+ that denotes how much population
mass is on that edge and a latency function ℓ̄e(x̄e) that gives the travel time for
taking a particular edge.

We compute an approximate latency function from the graph convolutional

network as L̄ : x ∈ R
|E|

"→ R
|Ē| and x defined by the rollouts from the robot

trajectories we implement the FW style update as

min
ξ,ξod

L̄
(

x(k)
)⊤

ξ(k)

s.t. Eodξ
(k)
od = Sod, ξ

(k)
od ≥ 0 ∀o, d

ξ(k) =
∑

od

ξ
(k)
od

