APPENDIX

Proof of Lemma 1

Suppose that at each discrete time step k, the proposed algorithm selects uy € C(z(t;)). Consider the time interval
[tkytr+1] where tgy1 — tp = AT and suppose that we use a fixed control input u(t) = uy on [tg,tx+1] and x(tx) € S.
Then x(t) € S for all ¢ € [tx, trt1].

Proof: To show this holds, if suffices to show that that u; remains in C(x(t)) for all ¢t € [ty, txy1]-
By assumption we have that z(¢;;) € S which is equivalent to h(z(t;)) > 0. Also by assumption we have that u(t;) =

ug € C(z(ty)) C C(x(tr)). Let us start by showing that for any § € [0, AT, the control input is in C(x(tx + ¢)). Using the
Lipschitz continuity of the Lie derivatives, the solution to the dynamics, and the bound on the control inputs, we have that

Lih(x(ty +96)) — Lyh(x(tr)) + (Loh(z(ty +6)) — Loh(x(ty))) uk

> —LnLa(Ly + Lylluxl]) - 0

> _Shgm('gf + SgBu) 0.
Rearranging, we have that

th(x(tk + 5)) + Lgh(l‘(tk + 5))uk > th(l’(tk)) + Lgh(x(tk)) - £h£x(£f + ,SgBu) - 0.
Adding and subtracting £,.,£,6 on the right hand side of the inequality, we have that
Lyh(z(ty 4 0)) + Loh(x(ty + 0))ur > Lyh(z(te)) + Loh(x(tr)) — £nLa(Ly + LBy + Lion) - 0 + LkonLad
> —K(h(z(tr)) + LronLsd.
Since C o h is Lipschitz continuous, we also have that
|’C(h($c(tk + (5)) — K:(h(.’);‘(tk)ﬂ < Lionlsd & —Lronlzd < ’C(h(l’(tk + 6)) — K(h(x(tk)) < LiconLso.
Therefore, by adding and subtracting K(h(x(tx + J)) on the right hand side of the above inequality, we deduce that
Lih(x(ty +96)) + Loh(z(tr + 0))ur, > K(h(z(ty +0)) — K(h(z(tr)) + LiconLsd — K(R(x(ty + 9))
> —K(h(x(tx + 9)).

This shows for any 6 € [0, AT], that we have u; € C(z(ty + ¢)) and therefore z(t; + 6) € S as a consequence by the
standard continuous time CBF arguments. [ ]

Proof of Lemma 3
_ Consider a loss function £()) (see (14)). Given a risk threshold o € (0, 1) and confidence level v € (0, 1), if we compute

A using non-exchangeable CRC to satisfy E[£(\)] < « + 3 (where (3 accounts for non-exchangeability), then e = awiﬁ
gives,
P(|Br (g, ur) — Br(wp, up)| < Ap +€) > 1— 7. (A.D)
Proof: First, observe that by the definition of our loss function L(j\) in equation (14):
L(}) = max (0, 1By — By| — }) (A2)
For any € > 0, if the barrier prediction error exceeds A + €, then the loss must be greater than e:
Bi — Bi| > A4e¢ = L(\) > ¢ (A.3)
This implication allows us to bound the probability of large prediction errors:
P(IBy, — B| > A +¢) < P(L()) > ¢) (A4)
By Markov’s concentration inequality, for any non-negative random variable X and a > 0:
P(X >a)< @ (A.5)

Applying Markov’s inequality to our loss function and using our non-exchangeable CRC guarantee that ]E[L(S\)] <a+p:
: E[L(Y)] _a+8

P(L(A\) >¢) < < (A.6)
€ €
Setting € = 2+B8  where o is the user-specified risk threshold, 3 is the total variation penalty term, and -y is the user-
specified confidence level, we obtain:
P(L(J\)>O‘+ﬁ) <y (A7)
Y

Taking the complement of this probability:

P(L(X)ga:5>21—7 (A8)



Since L()\) = max (0 |Bi, — By| — ) we have:

P<|Bk—5’k—5\§a+ﬁ) >1—n

Rearranging:

P<|Bkl§k <)\

Thus, with € = a—;’ﬁ, we have proven that:

P(IBr—Br| <A+e)>1—n
This completes the proof.
Proof of Theorem 1

(A9)

(A.10)

(A.11)

Consider the human-robot system (7) with barrier certificates defined in (12). Given a confidence level v € (0,1) and
risk threshold a. € (0, 1), if we have the non-exchangeable CRC guarantee such that A satisfies E[£()\)] < o+ 8 and set

€= "T'w, then the prediction set defining the safe set of control inputs under uncertainty,

Ci(x1) = {un € Uz | Bi(zr,u) — (Mg +€) > 0},

ensures that P(h(zg41) > 0) > 1 — v holds.
Proof: From Lemma 3, we know that with ¢ = O‘TW:

P(IBr—Br| <A+e)>1—n

For any robot control action ug € C5, by definition of our prediction set in (13):

Bk*(j\+€)20

When the barrier prediction error is bounded (which occurs with probability at least 1 — ), we have:

Be — Bl < A+e
This inequality can be written as a two-sided bound:
Ate>By—Br>—(\+e)

Rearranging inequalities:

B+ A+e€)>Bp>Br—(\+e)
Combining with our prediction set constraint:

By >Br—(A+e)>0

By the properties of barrier certificates and Lemma 2, we know that:

B, >0 = h(zprs1, Tapt1) =0
Therefore, we have chain of probabilities:

P(h(fUR,k+1,$H,k+1) ) (Bk > 0)

AVARAVARLV]

Y
This establishes our desired probabilistic safety guarantee:

P(h(zg k+1, Tup+1) > 0) > 1 —
This completes the proof.

P
P(|B; — Bk| <A+ €)
1-—
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