APPENDIX

Proof of Lemma 1

Suppose that at each discrete time step k, the proposed algorithm selects $u_k \in \widetilde{\mathcal{C}}(x(t_k))$. Consider the time interval $[t_k, t_{k+1}]$ where $t_{k+1} - t_k = \Delta T$ and suppose that we use a fixed control input $u(t) \equiv u_k$ on $[t_k, t_{k+1}]$ and $x(t_k) \in S$. Then $x(t) \in S$ for all $t \in [t_k, t_{k+1}]$.

Proof: To show this holds, if suffices to show that that u_k remains in C(x(t)) for all $t \in [t_k, t_{k+1}]$.

By assumption we have that $x(t_k) \in S$ which is equivalent to $h(x(t_k)) \ge 0$. Also by assumption we have that $u(t_k) = u_k \in \widetilde{C}(x(t_k)) \subseteq C(x(t_k))$. Let us start by showing that for any $\delta \in [0, \Delta T]$, the control input is in $C(x(t_k + \delta))$. Using the Lipschitz continuity of the Lie derivatives, the solution to the dynamics, and the bound on the control inputs, we have that

$$L_f h(x(t_k + \delta)) - L_f h(x(t_k)) + (L_g h(x(t_k + \delta)) - L_g h(x(t_k))) u_k$$

$$\geq -\mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g ||u_k||) \cdot \delta$$

$$\geq -\mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta.$$

Rearranging, we have that

$$L_f h(x(t_k + \delta)) + L_g h(x(t_k + \delta))u_k \ge L_f h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k + \delta))u_k \ge L_f h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) \cdot \delta h(x(t_k)) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - \mathfrak{L}_h \mathfrak{L}_x(\mathfrak{L}_f + \mathfrak{L}_g B_u) + L_g h(x(t_k)) - L_g h(x(t_k)) - L_g h(x(t_k)) - L_g h(x(t_k)) + L_g h(x(t_k)) - L_g h(x$$

Adding and subtracting $\mathfrak{L}_{\alpha \circ h} \mathfrak{L}_x \delta$ on the right hand side of the inequality, we have that

$$L_{f}h(x(t_{k}+\delta)) + L_{g}h(x(t_{k}+\delta))u_{k} \geq L_{f}h(x(t_{k})) + L_{g}h(x(t_{k})) - \mathfrak{L}_{h}\mathfrak{L}_{x}(\mathfrak{L}_{f}+\mathfrak{L}_{g}B_{u}+\mathfrak{L}_{\mathcal{K}\circ h})\cdot\delta + \mathfrak{L}_{\mathcal{K}\circ h}\mathfrak{L}_{x}\delta$$
$$\geq -\mathcal{K}(h(x(t_{k})) + \mathfrak{L}_{\mathcal{K}\circ h}\mathfrak{L}_{x}\delta.$$

Since $\mathcal{K} \circ h$ is Lipschitz continuous, we also have that

$$\left|\mathcal{K}(h(x(t_k+\delta)) - \mathcal{K}(h(x(t_k)))\right| \leq \mathfrak{L}_{\mathcal{K} \circ h} \mathfrak{L}_x \delta \iff -\mathfrak{L}_{\mathcal{K} \circ h} \mathfrak{L}_x \delta \leq \mathcal{K}(h(x(t_k+\delta)) - \mathcal{K}(h(x(t_k))) \leq \mathfrak{L}_{\mathcal{K} \circ h} \mathfrak{L}_x \delta)$$

Therefore, by adding and subtracting $\mathcal{K}(h(x(t_k + \delta)))$ on the right hand side of the above inequality, we deduce that

$$L_f h(x(t_k + \delta)) + L_g h(x(t_k + \delta))u_k \ge \mathcal{K}(h(x(t_k + \delta)) - \mathcal{K}(h(x(t_k)) + \mathfrak{L}_{\mathcal{K} \circ h}\mathfrak{L}_x \delta - \mathcal{K}(h(x(t_k + \delta))))u_k \ge -\mathcal{K}(h(x(t_k + \delta)))u_k \ge -\mathcal{K}(h(x(t_k$$

This shows for any $\delta \in [0, \Delta T]$, that we have $u_k \in C(x(t_k + \delta))$ and therefore $x(t_k + \delta) \in S$ as a consequence by the standard continuous time CBF arguments.

Proof of Lemma 3

Consider a loss function $\mathcal{L}(\lambda)$ (see (14)). Given a risk threshold $\alpha \in (0, 1)$ and confidence level $\gamma \in (0, 1)$, if we compute $\hat{\lambda}$ using non-exchangeable CRC to satisfy $\mathbb{E}[\mathcal{L}(\hat{\lambda})] \leq \alpha + \beta$ (where β accounts for non-exchangeability), then $\epsilon = \frac{\alpha + \beta}{\gamma}$ gives,

$$P(|\mathcal{B}_k(x_k, u_k) - \hat{\mathcal{B}}_k(x_k, u_k)| \le \hat{\lambda}_k + \epsilon) \ge 1 - \gamma.$$
(A.1)

Proof: First, observe that by the definition of our loss function $L(\hat{\lambda})$ in equation (14):

$$L(\hat{\lambda}) = \max\left(0, |\mathcal{B}_k - \hat{\mathcal{B}}_k| - \hat{\lambda}\right)$$
(A.2)

For any $\epsilon > 0$, if the barrier prediction error exceeds $\hat{\lambda} + \epsilon$, then the loss must be greater than ϵ :

$$|\mathcal{B}_k - \mathcal{B}_k| > \lambda + \epsilon \implies L(\lambda) > \epsilon \tag{A.3}$$

This implication allows us to bound the probability of large prediction errors:

$$P(|\mathcal{B}_k - \hat{\mathcal{B}}_k| > \hat{\lambda} + \epsilon) \le P(L(\hat{\lambda}) > \epsilon)$$
(A.4)

By Markov's concentration inequality, for any non-negative random variable X and a > 0:

$$P(X > a) \le \frac{\mathbb{E}[X]}{a} \tag{A.5}$$

Applying Markov's inequality to our loss function and using our non-exchangeable CRC guarantee that $\mathbb{E}[L(\hat{\lambda})] \leq \alpha + \beta$:

$$P(L(\hat{\lambda}) > \epsilon) \le \frac{\mathbb{E}[L(\hat{\lambda})]}{\epsilon} \le \frac{\alpha + \beta}{\epsilon}$$
(A.6)

Setting $\epsilon = \frac{\alpha + \beta}{\gamma}$, where α is the user-specified risk threshold, β is the total variation penalty term, and γ is the user-specified confidence level, we obtain:

$$P\left(L(\hat{\lambda}) > \frac{\alpha + \beta}{\gamma}\right) \le \gamma \tag{A.7}$$

Taking the complement of this probability:

$$P\left(L(\hat{\lambda}) \le \frac{\alpha + \beta}{\gamma}\right) \ge 1 - \gamma$$
 (A.8)

Since $L(\hat{\lambda}) = \max\left(0, |\mathcal{B}_k - \hat{\mathcal{B}}_k| - \hat{\lambda}\right)$, we have:

$$P\left(|\mathcal{B}_{k} - \hat{\mathcal{B}}_{k}| - \hat{\lambda} \le \frac{\alpha + \beta}{\gamma}\right) \ge 1 - \gamma \tag{A.9}$$

Rearranging:

$$P\left(\left|\mathcal{B}_{k}-\hat{\mathcal{B}}_{k}\right| \leq \hat{\lambda} + \frac{\alpha+\beta}{\gamma}\right) \geq 1-\gamma \tag{A.10}$$

Thus, with $\epsilon = \frac{\alpha + \beta}{\gamma}$, we have proven that:

$$P(|\mathcal{B}_k - \hat{\mathcal{B}}_k| \le \hat{\lambda} + \epsilon) \ge 1 - \gamma \tag{A.11}$$

This completes the proof.

Proof of Theorem 1

Consider the human-robot system (7) with barrier certificates defined in (12). Given a confidence level $\gamma \in (0,1)$ and risk threshold $\alpha \in (0,1)$, if we have the non-exchangeable CRC guarantee such that $\hat{\lambda}$ satisfies $\mathbb{E}[\mathcal{L}(\hat{\lambda})] \leq \alpha + \beta$ and set $\epsilon = \frac{\alpha + \beta}{\gamma}$, then the prediction set defining the safe set of control inputs under uncertainty,

$$C_{\lambda}(x_k) = \{ u_{\mathsf{R}} \in \mathcal{U}_{\mathsf{R}} \mid \hat{\mathcal{B}}_k(x_k, u_k) - (\hat{\lambda}_k + \epsilon) \ge 0 \},$$
(A.12)

ensures that $P(h(x_{k+1}) \ge 0) \ge 1 - \gamma$ holds. *Proof:* From Lemma 3, we know that with $\epsilon = \frac{\alpha + \beta}{\gamma}$:

$$P(|\mathcal{B}_k - \hat{\mathcal{B}}_k| \le \hat{\lambda} + \epsilon) \ge 1 - \gamma \tag{A.13}$$

For any robot control action $u_{\mathbb{R}} \in C_{\hat{\lambda}}$, by definition of our prediction set in (13):

$$\hat{\mathcal{B}}_k - (\hat{\lambda} + \epsilon) \ge 0 \tag{A.14}$$

When the barrier prediction error is bounded (which occurs with probability at least $1 - \gamma$), we have:

$$|\mathcal{B}_k - \hat{\mathcal{B}}_k| \le \hat{\lambda} + \epsilon \tag{A.15}$$

This inequality can be written as a two-sided bound:

$$\hat{\lambda} + \epsilon \ge \mathcal{B}_k - \hat{\mathcal{B}}_k \ge -(\hat{\lambda} + \epsilon) \tag{A.16}$$

Rearranging inequalities:

$$\hat{\mathcal{B}}_k + (\hat{\lambda} + \epsilon) \ge \mathcal{B}_k \ge \hat{\mathcal{B}}_k - (\hat{\lambda} + \epsilon)$$
(A.17)

Combining with our prediction set constraint:

$$\mathcal{B}_k \ge \hat{\mathcal{B}}_k - (\hat{\lambda} + \epsilon) \ge 0 \tag{A.18}$$

By the properties of barrier certificates and Lemma 2, we know that:

$$\mathcal{B}_k \ge 0 \implies h(x_{\mathbf{R},k+1}, x_{\mathbf{H},k+1}) \ge 0 \tag{A.19}$$

Therefore, we have chain of probabilities:

$$P(h(x_{\mathsf{R},k+1}, x_{\mathsf{H},k+1}) \ge 0) \ge P(\mathcal{B}_k \ge 0) \tag{A.20}$$

$$\geq P(|\mathcal{B}_k - \mathcal{B}_k| \le \lambda + \epsilon) \tag{A.21}$$

 $\geq 1 - \gamma$ (A.22)

This establishes our desired probabilistic safety guarantee:

$$P(h(x_{\mathbf{R},k+1}, x_{\mathbf{H},k+1}) \ge 0) \ge 1 - \gamma$$
 (A.23)

This completes the proof.