
APPENDIX

Proof of Lemma 1

Suppose that at each discrete time step k, the proposed algorithm selects uk ∈ C̃(x(tk)). Consider the time interval
[tk, tk+1] where tk+1 − tk = ∆T and suppose that we use a fixed control input u(t) ≡ uk on [tk, tk+1] and x(tk) ∈ S .
Then x(t) ∈ S for all t ∈ [tk, tk+1].

Proof: To show this holds, if suffices to show that that uk remains in C(x(t)) for all t ∈ [tk, tk+1].
By assumption we have that x(tk) ∈ S which is equivalent to h(x(tk)) ≥ 0. Also by assumption we have that u(tk) =

uk ∈ C̃(x(tk)) ⊆ C(x(tk)). Let us start by showing that for any δ ∈ [0,∆T ], the control input is in C(x(tk + δ)). Using the
Lipschitz continuity of the Lie derivatives, the solution to the dynamics, and the bound on the control inputs, we have that

Lfh(x(tk + δ))− Lfh(x(tk)) + (Lgh(x(tk + δ))− Lgh(x(tk)))uk

≥ −LhLx(Lf + Lg∥uk∥) · δ
≥ −LhLx(Lf + LgBu) · δ.

Rearranging, we have that
Lfh(x(tk + δ)) + Lgh(x(tk + δ))uk ≥ Lfh(x(tk)) + Lgh(x(tk))− LhLx(Lf + LgBu) · δ.

Adding and subtracting Lα◦hLxδ on the right hand side of the inequality, we have that
Lfh(x(tk + δ)) + Lgh(x(tk + δ))uk ≥ Lfh(x(tk)) + Lgh(x(tk))− LhLx(Lf + LgBu + LK◦h) · δ + LK◦hLxδ

≥ −K(h(x(tk)) + LK◦hLxδ.

Since K ◦ h is Lipschitz continuous, we also have that
|K(h(x(tk + δ))−K(h(x(tk))| ≤ LK◦hLxδ ⇔ −LK◦hLxδ ≤ K(h(x(tk + δ))−K(h(x(tk)) ≤ LK◦hLxδ.

Therefore, by adding and subtracting K(h(x(tk + δ)) on the right hand side of the above inequality, we deduce that
Lfh(x(tk + δ)) + Lgh(x(tk + δ))uk ≥ K(h(x(tk + δ))−K(h(x(tk)) + LK◦hLxδ −K(h(x(tk + δ))

≥ −K(h(x(tk + δ)).

This shows for any δ ∈ [0,∆T ], that we have uk ∈ C(x(tk + δ)) and therefore x(tk + δ) ∈ S as a consequence by the
standard continuous time CBF arguments.

Proof of Lemma 3

Consider a loss function L(λ) (see (14)). Given a risk threshold α ∈ (0, 1) and confidence level γ ∈ (0, 1), if we compute
λ̂ using non-exchangeable CRC to satisfy E[L(λ̂)] ≤ α + β (where β accounts for non-exchangeability), then ϵ = α+β

γ
gives,

P (|Bk(xk, uk)− B̂k(xk, uk)| ≤ λ̂k + ϵ) ≥ 1− γ. (A.1)

Proof: First, observe that by the definition of our loss function L(λ̂) in equation (14):

L(λ̂) = max
(
0, |Bk − B̂k| − λ̂

)
(A.2)

For any ϵ > 0, if the barrier prediction error exceeds λ̂+ ϵ, then the loss must be greater than ϵ:
|Bk − B̂k| > λ̂+ ϵ =⇒ L(λ̂) > ϵ (A.3)

This implication allows us to bound the probability of large prediction errors:
P (|Bk − B̂k| > λ̂+ ϵ) ≤ P (L(λ̂) > ϵ) (A.4)

By Markov’s concentration inequality, for any non-negative random variable X and a > 0:

P (X > a) ≤ E[X]

a
(A.5)

Applying Markov’s inequality to our loss function and using our non-exchangeable CRC guarantee that E[L(λ̂)] ≤ α+β:

P (L(λ̂) > ϵ) ≤ E[L(λ̂)]
ϵ

≤ α+ β

ϵ
(A.6)

Setting ϵ = α+β
γ , where α is the user-specified risk threshold, β is the total variation penalty term, and γ is the user-

specified confidence level, we obtain:

P

(
L(λ̂) >

α+ β

γ

)
≤ γ (A.7)

Taking the complement of this probability:

P

(
L(λ̂) ≤ α+ β

γ

)
≥ 1− γ (A.8)



Since L(λ̂) = max
(
0, |Bk − B̂k| − λ̂

)
, we have:

P

(
|Bk − B̂k| − λ̂ ≤ α+ β

γ

)
≥ 1− γ (A.9)

Rearranging:

P

(
|Bk − B̂k| ≤ λ̂+

α+ β

γ

)
≥ 1− γ (A.10)

Thus, with ϵ = α+β
γ , we have proven that:

P (|Bk − B̂k| ≤ λ̂+ ϵ) ≥ 1− γ (A.11)
This completes the proof.

Proof of Theorem 1
Consider the human-robot system (7) with barrier certificates defined in (12). Given a confidence level γ ∈ (0, 1) and

risk threshold α ∈ (0, 1), if we have the non-exchangeable CRC guarantee such that λ̂ satisfies E[L(λ̂)] ≤ α + β and set
ϵ = α+β

γ , then the prediction set defining the safe set of control inputs under uncertainty,

Cλ(xk) = {uR ∈ UR | B̂k(xk, uk)− (λ̂k + ϵ) ≥ 0}, (A.12)
ensures that P (h(xk+1) ≥ 0) ≥ 1− γ holds.

Proof: From Lemma 3, we know that with ϵ = α+β
γ :

P (|Bk − B̂k| ≤ λ̂+ ϵ) ≥ 1− γ (A.13)
For any robot control action uR ∈ Cλ̂, by definition of our prediction set in (13):

B̂k − (λ̂+ ϵ) ≥ 0 (A.14)
When the barrier prediction error is bounded (which occurs with probability at least 1− γ), we have:

|Bk − B̂k| ≤ λ̂+ ϵ (A.15)
This inequality can be written as a two-sided bound:

λ̂+ ϵ ≥ Bk − B̂k ≥ −(λ̂+ ϵ) (A.16)
Rearranging inequalities:

B̂k + (λ̂+ ϵ) ≥ Bk ≥ B̂k − (λ̂+ ϵ) (A.17)
Combining with our prediction set constraint:

Bk ≥ B̂k − (λ̂+ ϵ) ≥ 0 (A.18)
By the properties of barrier certificates and Lemma 2, we know that:

Bk ≥ 0 =⇒ h(xR,k+1, xH,k+1) ≥ 0 (A.19)
Therefore, we have chain of probabilities:

P (h(xR,k+1, xH,k+1) ≥ 0) ≥ P (Bk ≥ 0) (A.20)

≥ P (|Bk − B̂k| ≤ λ̂+ ϵ) (A.21)
≥ 1− γ (A.22)

This establishes our desired probabilistic safety guarantee:
P (h(xR,k+1, xH,k+1) ≥ 0) ≥ 1− γ (A.23)

This completes the proof.
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